Progress in research on *Acinetobacter baumannii* in pediatric ventilator-associated pneumonia

LOU Yong-zheng, WU Jun-hua, QIU Hai-yan
Ningbo University, Ningbo, Zhejiang 315211, China

Corresponding author: WU Jun-hua, E-mail: wudata@163.com

Abstract: With the application of ventilator in critically ill children, more and more children benefit from it, and ventilator-associated pneumonia, as a complication, has attracted the attention of medical workers. *Acinetobacter baumannii* is a common pathogen causing this complication, and children in intensive care units are more likely to be infected with this pathogen. Because *Acinetobacter baumannii* has multiple drug resistance mechanisms, many antibiotics have poor therapeutic effect on *Acinetobacter baumannii*, which makes the treatment of the pathogen infection more difficult in clinical practice. This paper is mainly to review the progress in research on the colonization, distribution, related risk factors and drug resistance of *Acinetobacter baumannii* in children with ventilator-associated pneumonia in recent years.

Keywords: Ventilator-associated pneumonia; Children; *Acinetobacter baumannii*; Drug resistance status

呼吸机相关性肺炎（ventilator-associated pneumonia, VAP）是儿科重症监护病房中常见的医院感染[1]，鲍曼不动杆菌（*Acinetobacter baumannii*, A. baumannii）为其主要病原体之一。A. baumannii 是一种严格需氧的革兰阴性杆菌[2]，是医院感染的主要条件致病菌，危重患儿免疫力低下，对其行气管插管等有创操作后，更易出现 A. baumannii 导致的 VAP。近年来，鲍曼不动杆菌中出现了多重耐药鲍曼不动杆菌（multidrug-resistant A. baumannii）、耐碳青霉烯鲍曼不动杆菌（carbapenem-resistant A. baumannii）、广泛耐药鲍曼不动杆菌（extensively drug resistant A. baumannii）和泛耐药鲍曼不动杆菌（pan drug resistant A. baumannii）。A. baumannii 极高的抗生素耐药率成为了国内外儿科医生面临的重要难题。因此，了解儿科 VAP 中 A. baumannii 的定植、分布情况以及相关危险因素和耐药情况尤为重要。

1 小儿 A. baumannii 的呼吸道定植情况

细菌从不同环境进入人体，可在体内一定部位定居、生长繁殖，这种现象通常称为细菌定植[3]。A. baumannii 为小儿呼吸道常见的定植菌。定植的细菌可成为感染的源头，例如，对患儿重复插管上机时，气管导管与患儿的气管黏膜上皮反复发生摩擦，导致摩擦部位损伤，同时将定植的 A. baumannii 带入下呼吸道，从而引起感染[4]。
A. baumannii 生活力顽强，可以在指尖、塑料以及其他环境表面，甚至干燥的表面上生存。国外有学者报道 A. baumannii 在干燥的环境下可以持续存活长达 4 周 [3]。生物膜的形成是 A. baumannii 在医院环境中长期生存的毒力因素之一。生物膜的形成有助于 A. baumannii 避免被常规消毒、脱水所杀灭，促使它在医院环境中稳定生存，也增加了与易感患者接触，导致 VAP 的暴发。产生生物膜的分离株比不产生生物膜的分离株在呼吸道上定植的时间更长。A. baumannii 的这个特性使其在定植期间也能与其他细菌，特别是金黄色葡萄球菌共定植 [5]。

A. baumannii 的定植增加了患儿呼吸道感染的风险，延长了住院天数，加大了住院费用，增加了死亡率，应引起临床医生的重视。

2 A. baumannii 在小儿 VAP 的地位

3 A. baumannii 引起小儿 VAP 的危险因素

3.1 严重的基础疾病：VAP 患儿在 ICU 中居多，患儿可能存在早产、先天性心脏病、呼吸道畸形等情况，基础条件差，需行机械通气维持呼吸，为 A. baumannii 感染创造了条件 [7]。

3.2 侵入性操作：患儿如切开机械通气治疗，则需行气管插管或气管切开操作。此操作会损伤气管黏膜，减弱气管的运动，破坏正常的呼吸道防御功能，清除异物能力下降 [11]，增加了 A. baumannii 感染的机会。

3.3 延长机械通气时间：临床研究表明，使用呼吸机超过 7 天会导致 A. baumannii 感染的风险性增加 [12]。长时间使用机械通气治疗，使患儿的呼吸机持续处在开放状态，同时呼吸道的防御功能降低，导致感染机会增加，持续的呼吸机治疗可能导致小儿气道表面生物膜的形成，使 A. baumannii 更容易适应呼吸道环境，并可能促使耐药菌株产生。

3.4 使用抗生素：随着 A. baumannii 耐药菌株的产生，临床中可有效杀灭 A. baumannii 的药物日益减少，长期使用大量广谱抗生素或不合理地应用抗生素可杀灭敏感菌群，抑制正常菌群的生长，而具有耐药性的 A. baumannii 仍可存活，并可能诱导产生新的耐药菌株，加大治疗难度。许娜娜等 [13] 的研究结果则显示，55.1% 的多重耐药鲍曼不动杆菌感染病例存在使用广谱抗生素大于 7 天的情况。联合使用抗菌药物患者多重耐药鲍曼不动杆菌的检出率为 67.5%，临床医生需注意抗生素的使用时间和使用方案。

3.5 长期使用糖皮质激素：VAP 患儿在 ICU 中居多，患儿基础条件差，如早产儿、低出生体重儿等，糖皮质激素可有效抑制炎症反应，对患儿有一定帮助。但是糖皮质激素亦可抑制免疫系统，导致机体对病原体的防御能力大大减弱，使 A. baumannii 更容易存活于病灶中 [14]。张晓英等 [15] 的多因素回归分析结果也提示肾上腺皮质激素应用是 ICU 患者机械通气 VAP 发生的独立影响因素。

另外，Thatrimontrichai 等 [16] 研究发现，极低出生体重儿（出生体重 1 000～1 499 g）、有剖宫产史、有头孢菌素使用史等因素可增加耐碳青霉烯鲍曼不动杆菌导致小儿 VAP 的风险。极低出生体重儿多见于早产儿，气管插管后不成熟的免疫系统更容易发生 VAP，当怀疑患儿发生 VAP 时，常会长期使用包括碳青霉烯类在内的多种广谱抗菌药物，从而使耐碳青霉烯鲍曼不动杆菌产生。经阴道分娩的新生儿儿循环中的细胞因子、白细胞介素、肿瘤坏死因子和干扰素的浓度明显高于剖宫产出生的婴儿，有剖宫产史的小儿免疫系统不完善，更易遭受感染。目前 A. baumannii 对头孢类药物高度耐药 [17]，使用头孢菌素可杀死敏感菌，使 A. baumannii 等的耐药菌株存活，从而增加耐碳青霉烯鲍曼不动杆菌感染的风险。

郭萍等 [18] 提出，气管切开、肠内营养、使用碳
青霉烯类抗生素和感染前预防性使用3种以上抗生素为泛耐药鲍曼不动杆菌致VAP的危险因素。其中肠内营养导致感染的原因可能是肠内营养需胃管，而长期置入胃管可能导致食管下括约肌松弛，胃内容物反流，禁食机辅助通气患儿一般于镇静剂对症治疗，患儿呼吸反射减弱或消失，反射性易进入呼吸道，导致感染。但Su等认为，早期肠内营养（机械通气大于48小时）在保护胃黏膜的同时，有助于降低VAP的发生率，缩短机械通气时间和ICU住院时间，改善预后。肠内营养对VAP的利弊还需要更多的临床试验予以证明。

4 小儿A. baumannii的耐药现状

由于临床上抗生素广泛使用，A. baumannii不改变异，产生多种耐药菌株。近年来对其耐药机制的研究逐渐深入，它产生抗生素耐药性的机制主要包括β内酰胺酶的产生增加、细胞膜渗透缺陷、抗生素作用位点改变和外排泵产生增加等。A. baumannii的多种耐药机制使其对儿科常用抗菌药物的耐药率显著上升；β内酰胺类、青霉素类等，但对头孢唑肟舒巴坦、替加环素、多粘菌素等的耐药率相对较低。A. baumannii耐药日趋严重，形势严峻，将使得儿科医生治疗A. baumannii感染面临无药可用的困境。

国内学者对2011年至2016年上海市儿童医院检出的A. baumannii进行耐药性监测，发现A. baumannii对大多数抗生素的耐药率总体呈上升趋势，是医院革兰阴性杆菌中耐药率最高的菌种。A. baumannii对青霉素类抗生素的耐药率上升较快，对亚胺培南、美罗培南的耐药率分别由2011年的38.3%和39.9%上升至2016年的68.4%和69.7%。头孢唑肟舒巴坦的耐药率（26.7%），对其他抗菌药物（头孢噻肟、头孢他啶、氨苄西林舒巴坦、庆大霉素等）的耐药率大多高于50%，虽然在6年内广泛耐药鲍曼不动杆菌的检出率呈逐年下降趋势（由27.3%降至20.0%），但仍处于较高水平。宋等分析了2013至2015年儿科医院分离的1078株鲍曼不动杆菌的耐药情况，结果发现A. baumannii对头孢唑肟舒巴坦和头孢他啶耐药率逐年下降，分别由9.94%和3.21%下降至0.26%和0.00%，而对头孢他啶、庆大霉素、亚胺培南、美罗培南、哌拉西林/他唑巴坦、阿米卡星接近全耐药。郎少磊等的研究表明，A. baumannii对头孢类抗生素广泛耐药，除头孢西丁外，耐药率均高于95.00%。付晓等的研究发现A. baumannii对Ⅰ～Ⅳ代头孢类抗生素耐药率均高于90%，这与宋等的研究结果不同。由以上数据可知，A. baumannii对青霉素类、氨基糖苷类、β内酰胺类具有高耐药性，对头孢唑肟舒巴坦的敏感性相对较高。

在国外，Kehr等收集了2004年至2012年间全球范围内儿科患者中的A. baumannii，并对其进行抗生素敏感性评估，结果显示，A. baumannii对亚胺培南和米诺环素的敏感性最高，敏感率分别为90.9%和90.8%，对美罗培南的敏感率也较高（77.6%）。与其他地区相比，欧洲和北美的药物敏感率始终较高。在全球范围内，所有A. baumannii中具有5.5%的菌株具有多重耐药性，其中在北美，只有5.6%的分离物是耐多药鲍曼不动杆菌，而在拉丁美洲和中东地区，这一比例超过50%。从以上数据来看，在全球范围内，A. baumannii对碳青霉烯类抗生素仍有一定的敏感性，A. baumannii中多重耐药菌株的比例较高。同样，也有文献显示A. baumannii在新生儿表现出高度的多药耐药性。

此外，对耐药性监测显示A. baumannii对多粘菌素B、替加环素的敏感率均为100%。2017年CHINET中国细菌耐药性监测显示A. baumannii对多粘菌素B和替加环素的耐药率较低，分别为0.1%和0.0%。国外研究报道了粘菌素（即多粘菌素E）是一种安全有效的治疗儿童多重耐药A. baumannii感染的药物。以上研究表明，替加环素、多粘菌素B和粘菌素可能作为治疗小儿A. baumannii感染的抗生素选择。

替加环素在成人患者中应用较多，但药物说明书提到，该药并不推荐用于18岁以下患者，可作为补救治疗的一种途径。若VAP患儿病情危重，且其他常用抗生素治疗效果欠佳，根据病原学结果，可考虑使用。林舒鹏等使用替加环素治疗A. baumannii感染的VAP患儿，好转率高达56.2%，感染清除率为44.0%。Zhu等在研究中对24名A. baumannii感染的VAP患儿予以替加环素抗感染治疗，临床效果和微生物根除率分别为37.5%和29.2%。

粘菌素和多粘菌素B在治疗小儿A. baumannii耐药菌株感染方面有相似的疗效，但在药物安全性问题。与粘菌素相比，多粘菌素B可能是一个更好的治疗选择，它的稳定性浓度更高，反应更快，而且报道的肾毒性更低。

目前在小儿患者中，A. baumannii感染以耐药菌株居多，对临床常用抗生素耐药率高，以往被视为禁忌或慎用的药物（如替加环素、多粘菌素等）被重新列至可选方案，而这些药物缺乏关于新生儿和儿童的数据，迫切需要在这些人群中进行药物代谢动力学和安全性试验，以确定最佳的药物剂型方案。

5 总结及展望

A. baumannii所导致的VAP治疗困难，随着...
耐药性A. baumannii菌株感染的不断增多，儿童用药有限，寻找更多有效治疗药物成为目前儿科医生的难题。在今后的临床工作中，医务人员需继续严密监测A. baumannii在小儿VAP中的分布及耐药情况，合理选择抗菌药物。目前已有许多针对耐药性菌株的研究，但仍需更多的临床试验来验证常用药物及新药的疗效，同时探索新的治疗方法，并且医疗卫生人员需注意A. baumannii引起VAP的发生危险因素，比如广谱抗生素的大量应用、气管插管、器官切开等各种创伤性操作、糖皮质激素的长期使用等，尽量避免院内感染的发生。

参考文献
[20] 孔燕, 王玉生. 急诊重症监护病房呼吸机相关性肺炎危险因素

